Quantum simulation study of the hydrated electron

Abstract
An excess electron in a sample of classical water molecules at room temperature has been simulated using path integral techniques. The electron–water interaction is modeled by a pseudopotential with effective core repulsion and further terms for the Coulomb interaction and polarization effects. Various discretizations of the electron path, up to 1000 points, are examined. The charge distribution of the electron is found to be compact and to occupy a cavity in the water, in agreement with the conventional picture. The solvation shell structure is similar to that of relatively large solvated atomic anions, but the radial electron‐solvent correlations are largely smeared out due to fluctuations of the electronic density distribution. In parts of the simulation the structure of the first solvation shell corresponds on the average to the structure proposed for hydrated electrons by Kevan. The computed solvation energy and the estimated energy of the first optical excitation agree reasonably well with experimental data.