Regulation of GTP Cyclohydrolase I and Dihydropteridine Reductase in Rat Pheochromocytoma PC 12 Cells

Abstract
The addition of 8-bromo cyclic AMP, forskolin, theophylline, and 3-isobutyl-1-methylxanthine to the medium of PC 12 cells resulted in an increase in GTP cyclohydrolase I activity, but had no effect on dihydropteridine reductase activity, except theophylline which caused a decrease in dihydropteridine reductase activity at 96 h. GTP cyclohydrolase I activity peaked at 24 h and returned to normal 96 h after drug treatment. Cycloheximide decreased GTP cyclohydrolase I activity at 48 and 96 h, but had little effect on dihydropteridine reductase activity. The addition of reserpine selectively increased only GTP cyclohydrolase I activity. The addition of tetrahydrobiopterin and sepiapterin, however, coordinately inhibited both GTP cyclohydrosase I and dihydropteridine reductase activities. It appears that GTP cyclohydrolase I activity in PC 12 cells is regulated by cyclic AMP stimulation and by end-product inhibition, whereas dihydropteridine reductase activity is only subject to pterin inhibition.