Phytochrome regulation of phytochrome mRNA abundance

Abstract
Pure phytochrome RNA sequence synthesized in an SP6-derived in vitro transcription system has been used as a standard to quantitate phytochrome mRNA abundance in Avena seedlings using a filter hybridization assay. In 4-day-old etiolated Avena seedlings phytochrome mRNA represents ∼0.1% of the total poly(A)+ RNA. Irradiation of such seedlings with a saturating red-light pulse or continuous white light induces a decline in this mRNA that is detectable within 30 min and results in a 50% reduction by ∼60 min and >90% reduction within 5 h. The effect of the red-light pulse is reversed, approximately to the level of the far-red control, by an immediately subsequent far-red pulse. In seedlings maintained in extended darkness after the red-light pulse, the initial rapid decline in phytochrome mRNA level is followed by a slower reaccumulation such that 50–60% of the initial abundance is reached by 48 h. White-light grown seedlings transferred to darkness exhibit a similar accumulation of phytochrome mRNA that is accelerated by removal of residual Pfr with a far-red light pulse at the start of the dark period. The data establish that previously reported phytochrome-regulated changes in translatable phytochrome mRNA levels result from changes in the physical abundance of this mRNA rather than from altered translatability.