Heat Transfer From a Shrouded Disk System With a Radial Outflow of Coolant

Abstract
This paper describes a combined theoretical and experimental study of the heat transfer from an air-cooled gas turbine disk using the model of a plane disk rotating close to a shrouded stator. Numerical solutions of the boundary layer equations are obtained by assuming a modified system geometry, and it is shown that this technique yields adequate estimates of moment coefficients and mean Nusselt numbers for the air-cooled disk. Experimental results show the effect of rotational speeds up to 4000 rev/min, coolant flow rates up to 2 lb/s, stator clearances and shroud clearances up to 2.7 in., on the mean Nusselt numbers for a 30-in-dia disk and its stator.

This publication has 0 references indexed in Scilit: