Abstract
Some factors affecting the resolution and accuracy of resistivity tomography are examined using numerical simulation. The inversion method used is based on smoothness‐constrained least‐squares and finite‐element methods. An appropriate block discretization is obtained by dividing the target region into square blocks of size equal to half the minimum electrode spacing. While the effect of the damping factor on the resolution is significant, the resolution is not very sensitive to Gaussian noise as long as the damping factor is properly chosen, according to the noise level. The issue of choosing an optimum electrode array should be considered at the planning stage of a survey.When the instrumental accuracy is high, the dipole‐dipole array is more suitable for resolving complex structures than the pole‐pole array. The pole‐dipole array gives somewhat less resolution than the dipole‐dipole array but yields greater signal strength; thus, the pole‐dipole array may be a good compromise between resolution and signal strength. The effect of an inhomogeneity located outside the target region may be very small if block discretization is done so as to represent the resistivity variations in both the target and outside regions.

This publication has 8 references indexed in Scilit: