Vascular Endothelial Growth Factor-A–Induced Chemotaxis of Monocytes Is Attenuated in Patients With Diabetes Mellitus

Abstract
Background—Vascular endothelial growth factor-A (VEGF-A) acts on endothelial cells and monocytes, 2 cell types that participate in the angiogenic and arteriogenic process in vivo. Thus far, it has not been possible to identify differences in individual responses to VEGF-A stimulation because of the lack of an ex vivo assay. Methods and Results—We report a chemotaxis assay using isolated monocytes from individual diabetic patients and from healthy, age-matched volunteers. The chemotactic response of individual monocyte preparations to VEGF-A, as mediated via Flt-1, was quantitatively assessed using a modified Boyden chamber. Although the migration of monocytes from healthy volunteers could be stimulated with VEGF-A (1 ng/mL) to a median of 148.4% of the control value (25th and 75th percentiles, 136% and 170%), monocytes from diabetic patients could not be stimulated with VEGF-A (median, 91.1% of unstimulated controls; 25th and 75th percentiles, 83% and 98%; PConclusions—The cellular response of monocytes to VEGF-A is attenuated in diabetic patients because of a downstream signal transduction defect. These data suggest that monocytes are important in arteriogenesis and that their ability to migrate might be critical to the arteriogenic response. Thus, we resolved a fundamental mechanism involved in the problem of impaired collateral formation in diabetic patients.