Abstract
We have examined the effect of K depletion on CSF [HCO3-] homeostasis in awake rats. The relationship of CSF [HCO3-] to arterial [HCO3-] in metabolic acid-base disturbances is displaced is an upward direction and has a significantly increased slope in K-depleted vs. control rats (0.51 +/- 0.02 vs. 0.42 +/- 0.02). Results of partial K-repletion experiments, with peripheral acid-base balance held constant, suggest that the effect is K specific. The K-depleted animals also exhibit a wider (CSF-arterial) PCO2 difference than controls (11.1 vs. 8.4 mmHg). When CSF [HCO3-] is shown as a function of CSF PCO2 the data of K-depleted rats are no longer displaced when compared to controls but still have a significantly greater slope (1.21 +/- 0.23 vs. 0.89 +/- 0.08). This increased slope is interpreted to reflect enhanced HCO3- movement from blood to CSF at high arterial [HCO3-]. Analysis of our data and observations from the literature in conditions of mixed acid-base disturbances suggest that CSF [HCO3-] is determined by a) CSF PCO2 and b) the level of arterial [HCO3-] when the latter is greater than the normal CSF [HCO3-].