Influence of Pathological Concentrations of Ammonia on Metabolic Fate of 14C‐Labeled Glutamate in Astrocytes in Primary Cultures

Abstract
Rates of glutamine formation and of carbon dioxide production (as an indication of oxidative deamination of glutamate) were determined in primary cultures of astrocytes exposed to 50 microM labeled glutamate in the absence or presence of added ammonia (0.1-3 mM). Glutamine formation (1.7 nmol/min/mg protein) was unaffected by all concentrations of added ammonia. This probably reflects the presence of a low content of ammonia (0.1-0.2 mM), originating from degradation of glutamine, in the cells even in the absence of added ammonia, and it shows that pathophysiological concentrations of ammonia do not increase the formation of glutamine from exogenous glutamate. The carbon dioxide production rate was 5.9 nmol/min/mg protein, i.e., three to four times higher than the rate of glutamine formation. It was significantly reduced (to 3.5 nmol/min/mg protein) in the presence of 1 mM or more of ammonia. This is in keeping with suggestions by others that toxic levels of ammonia affect oxidative metabolism.