Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis
- 23 June 1998
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 95 (13) , 7825-7829
- https://doi.org/10.1073/pnas.95.13.7825
Abstract
ETR1 represents a prototypical ethylene receptor. Homologues of ETR1 have been identified in Arabidopsis as well as in other plant species, indicating that ethylene perception involves a family of receptors and that the mechanism of ethylene perception is conserved in plants. The amino-terminal half of ETR1 contains a hydrophobic domain responsible for ethylene binding and membrane localization. The carboxyl-terminal half of the polypeptide contains domains with homology to histidine kinases and response regulators, signaling motifs originally identified in bacteria. The putative histidine kinase domain of ETR1 was expressed in yeast as a fusion protein with glutathione S-transferase and affinity purified. Autophosphorylation of the purified fusion protein was observed on incubation with radiolabeled ATP. The incorporated phosphate was resistant to treatment with 3 M NaOH, but was sensitive to 1 M HCl, consistent with phosphorylation of histidine. Autophosphorylation was abolished by mutations that eliminated either the presumptive site of phosphorylation (His-353) or putative catalytic residues within the kinase domain. Truncations were used to delineate the region required for histidine kinase activity. An examination of cation requirements indicated that ETR1 requires Mn2+ for autophosphorylation. These results demonstrate that higher plants contain proteins with histidine kinase activity. Furthermore, these results indicate that aspects of ethylene signaling may be regulated by changes in histidine kinase activity of the receptor.Keywords
This publication has 34 references indexed in Scilit:
- Yeast HOG1 MAP Kinase Cascade Is Regulated by a Multistep Phosphorelay Mechanism in the SLN1–YPD1–SSK1 “Two-Component” OsmosensorCell, 1996
- Ethylene-Binding Sites Generated in Yeast Expressing the Arabidopsis ETR1 GeneScience, 1995
- Analysis of Ethylene Signal-Transduction Kinetics Associated with Seedling-Growth Response and Chitinase Induction in Wild-Type and Mutant ArabidopsisPlant Physiology, 1995
- The Tomato Never-ripe Locus Regulates Ethylene-Inducible Gene Expression and Is Linked to a Homolog of the Arabidopsis ETR1 GenePlant Physiology, 1995
- Histidine and aspartate phosphorylation: two-component systems and the limits of homologyTrends in Biochemical Sciences, 1994
- Receptor‐like kinase activity in membranes of Arabidopsis thalianaFEBS Letters, 1993
- Requirement of Both Kinase and Phosphatase Activities of an Escherichia coli Receptor (Taz1) for Ligand-dependent Signal TransductionJournal of Molecular Biology, 1993
- CTR1, a negative regulator of the ethylene response pathway in arabidopsis, encodes a member of the Raf family of protein kinasesCell, 1993
- On the Role of Abscisic Acid and Gibberellin in the Regulation of Growth in RicePlant Physiology, 1992
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970