A class of convex non-coercive functionals and masonry-like materials
- 1 August 1985
- journal article
- Published by European Mathematical Society - EMS - Publishing House GmbH in Annales de l'Institut Henri Poincaré C, Analyse non linéaire
- Vol. 2 (4) , 261-307
- https://doi.org/10.1016/s0294-1449(16)30398-5
Abstract
We consider a class of functionals of the strain (or of the gradient), whose main feature is that they are not coercive when the forces are zero, while they are coercive under suitable assumptions for the load. The main application is to the problem of static equilibrium for a class of elastic materials in which the stress is constrained to be negative semi-definite. Functions of bounded deformation and measure theory are a basic technical tool in the paper. Résumé: Nous considérons une classe de fonctionnelles de la tension (ou du gradient) dont la caractéristique principale est qu’elles ne sont pas coercives lorsque les forces sont nulles, alors qu’elles le sont sous des hypothèses convenables pour la charge. On applique principalement ces résultats au problème de l’équilibre statique pour une classe de matériaux élastiques lorsque la tension est supposée semi-définie négative. Les fonctions de déformation bornée et la théorie de la mesure sont les outils techniques de base dans cet article.This publication has 8 references indexed in Scilit:
- Pairings between measures and bounded functions and compensated compactnessAnnali di Matematica Pura ed Applicata (1923 -), 1983
- Elastic plastic deformationApplied Mathematics & Optimization, 1983
- On the existence of the rates of stress and displacement for Prandtl-Reuss plasticityQuarterly of Applied Mathematics, 1983
- On the continuity of the trace of vector functions with bounded deformationApplicable Analysis, 1981
- Existence of the displacements field for an elasto-plastic body subject to Hencky's law and Von Mises yield conditionmanuscripta mathematica, 1980
- On the equation of surfaces of prescribed mean curvatureInventiones Mathematicae, 1978
- On the dirichlet problem for surfaces of prescribed mean curvaturemanuscripta mathematica, 1974
- H = WProceedings of the National Academy of Sciences, 1964