Mice Lacking the Integrin β5 Subunit Have Accelerated Osteoclast Maturation and Increased Activity in the Estrogen-Deficient State
- 1 January 2005
- journal article
- Published by Oxford University Press (OUP) in Journal of Bone and Mineral Research
- Vol. 20 (1) , 58-66
- https://doi.org/10.1359/jbmr.041017
Abstract
Integrin alphavbeta5 is expressed on osteoclast precursors and is capable of recognizing the same amino acid motif as alphavbeta3. Three-month-old beta5(-/-) female OVX mice had increased osteoclastogenesis ex vivo, and microCT assessment of trabecular bone volume was 53% lower than WT-OVX animals. These preliminary data suggest alphavbeta5 integrin's presence on osteoclast precursors may inhibit of osteoclast formation. Osteoclasts are unique resorptive skeletal cells, capable of degrading bone on contact to the juxtaposed matrix. Integrin alphavbeta5 is expressed on osteoclast precursors, structurally similar to alphavbeta3, and capable of recognizing the same amino acid motif. Given the structural relationship and reciprocal regulation of alphavbeta3 and alphavbeta5, the purpose of this study was to evaluate how alphavbeta5 might contribute to osteoclast maturation and activity. Three-month-old wildtype (WT) and beta5(-/-) female mice had ovariectomy (OVX) or sham operations. The osteoclastogenic capacity of marrow-derived precursors, the kinetic, the circulating, and structural parameters of bone remodeling, was determined after 6 weeks of paired feeding. OVX increased osteoclastogenesis ex vivo and in vivo. Osteoclast formation and prolonged pre-osteoclast survival were substantially enhanced in cultures containing beta5(-/-) cells whether obtained from sham-operated or OVX mice. Expression of cathepsin K, beta3 integrin subunit, and calcitonin receptor were accelerated in cultured beta5(-/-)osteoclasts. beta5(-/-) osteoclasts from OVX animals showed a 3-fold enhancement of net resorptive activity, with quantitative muCT showing trabecular bone volume loss after OVX 53% greater in beta5(-/-) OVX compared with similarly treated WT OVX mice (p < 0.05). alpha5beta3 seems to be an inhibitor of osteoclast formation, in contrast to alphavbeta3. In addition, loss of alphavbeta5 seems to accelerate osteoclast formation in the OVX model. Further examination of alphavbeta5 signaling pathways may enhance our understanding of the activation of bone resorption.Keywords
This publication has 33 references indexed in Scilit:
- Both hPTH(1–34) and bFGF Increase Trabecular Bone Mass in Osteopenic Rats but They Have Different Effects on Trabecular Bone ArchitectureJournal of Bone and Mineral Research, 2003
- A Glanzmann’s mutation in β3 integrin specifically impairs osteoclast functionJournal of Clinical Investigation, 2001
- Normal Development, Wound Healing, and Adenovirus Susceptibility in β5-Deficient MiceMolecular and Cellular Biology, 2000
- Integrin αvβ3-Mediated Activation of ApoptosisExperimental Cell Research, 1999
- A new method for the model‐independent assessment of thickness in three‐dimensional imagesJournal of Microscopy, 1997
- Quantification of Bone Microarchitecture with the Structure Model IndexComputer Methods in Biomechanics and Biomedical Engineering, 1997
- β1 integrins and osteoclast function: Involvement in collagen recognition and bone resorptionBone, 1996
- ArgGlyAsp (RGD) peptides and the anti-vitronectin receptor antibody 23C6 inhibit dentine resorption and cell spreading by osteoclasts*1Experimental Cell Research, 1991
- Bone histomorphometry: Standardization of nomenclature, symbols, and units: Report of the asbmr histomorphometry nomenclature committeeJournal of Bone and Mineral Research, 1987
- Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss.Journal of Clinical Investigation, 1983