Modeling and optimization of rotational C-arm stereoscopic X-ray angiography
- 1 July 1999
- journal article
- research article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Medical Imaging
- Vol. 18 (7) , 604-616
- https://doi.org/10.1109/42.790460
Abstract
Stereoscopy can be an effective method for obtaining three-dimensional (3-D) spatial information from two-dimensional (2-D) projection X-ray images, without the need for tomographic reconstruction. This much-needed information is missed in many X-ray diagnostic and interventional procedures, such as the treatment of vascular aneurysms. Fast C-arm X-ray systems can obtain multiple angle sequences of stereoscopic image pairs from a single contrast injection and a single breath hold. To advance this solution, we developed a model of stereo angiography, performed perception experiments and related results to optimal acquisition. The model described horizontal disparity for the C-arm geometry that agreed very well with measurements from a geometric phantom. The perceptual accommodation-convergence conflict and geometry limited the effective stereoscopic field of view (SFOV). For a typical large image intensifier system, it was 28 cm x 31 cm at the center of rotation (COR). In the model, blurring from finite focal-spot size and C-arm motion reduced depth resolution on the digital display. Near the COR, the predicted depth resolution was 3-11 mm for a viewing angle of 7 degrees , which agreed favorably with results from recently published studies. The model also described how acquisition parameters affected spatial warping of curves of equal apparent depth. Pincushioning and the difference between the acquisition and display geometry were found to introduce additional distortions to stereo displays. Preference studies on X-ray angiograms indicated that the ideal viewing angle should be small (1-2 degrees), which agreed with some previously published work. Perceptual studies indicated that stereo angiograms should have high artery contrast and that digital processing to increase contrast improved stereopsis. Digital subtraction angiograms, with different motion errors between the left and right-eye views, gave artifacts that confused stereopsis. The addition of background to subtracted images reduced this effect and provided other features for improved depth perception. Using the modeling results and typical clinical angiography requirements, we recommend acquisition protocols and engineering specifications that are achievable on current high-end systems.Keywords
This publication has 32 references indexed in Scilit:
- Evaluation of perceived distortions in stereoscopic images (projection radiography)Published by Institute of Electrical and Electronics Engineers (IEEE) ,2002
- Three-dimensional multimodal image-guidance for neurosurgeryIEEE Transactions on Medical Imaging, 1996
- Transjugular intrahepatic porto-systemic shunt (TIPS): Indications and follow upEuropean Journal of Ultrasound, 1995
- Integration of stereoscopic DSA and 3D MRI for image-guided neurosurgeryComputerized Medical Imaging and Graphics, 1994
- Transformations for stereoscopic visual simulationComputers & Graphics, 1993
- Human Engineering in Stereoscopic Viewing DevicesPublished by Springer Nature ,1993
- Recovering epipolar geometry in 3-D vision systemsPublished by SPIE-Intl Soc Optical Eng ,1991
- Limits of Fusion and Depth Judgment in Stereoscopic Color DisplaysHuman Factors: The Journal of the Human Factors and Ergonomics Society, 1990
- Accurate Analysis of Blood Vessel Sizes and Stenotic Lesions Using Stereoscopic DSA SystemInvestigative Radiology, 1988
- Evidence for disparity change as the primary stimulus for stereoscopic processingPerception & Psychophysics, 1984