Bound states in photonic crystal waveguides and waveguide bends

Abstract
We investigate the mechanism for the appearance of bound states in two-dimensional photonic crystal waveguides and contrast it with the corresponding mechanism for conventional guides. It is shown that the periodicity of the photonic crystal can give rise to frequency ranges above cutoff where no guided modes exist in the waveguides. Such mode gaps make possible the creation of bound states in constrictions and in bends. Bound states are found to correspond to analogous cavity modes and it is shown that their appearance strongly depends on the lattice geometry and cannot be described in a one-dimensional framework.