Boson realization of sp(4). I. The matrix formulation
- 1 September 1985
- journal article
- conference paper
- Published by AIP Publishing in Journal of Mathematical Physics
- Vol. 26 (9) , 2107-2123
- https://doi.org/10.1063/1.526833
Abstract
Holstein and Primakoff derived long ago the boson realization of a su(2) Lie algebra for an arbitrary irreducible representation (irrep) of the SU(2) group. The corresponding result for su(1,1)≅sp(2) is also well known. This raises the question of whether it is possible to obtain in an explicit, analytic, and closed form, and for any integer d, the boson realization of a sp(2d) Lie algebra for an arbitrary irrep of the Sp(2d) group, which is a problem of considerable physical interest. The case d=2 already illustrates the problem in its full generality and thus in this paper we concentrate on sp(4). The Dyson realization is well known, and the passage to bosons satisfying the appropriate Hermiticity conditions can be done by a similarity transformation through an operator K. What we want, though, is an explicit boson realization for sp(2d) similar to the one that exists for sp(2). In Sec. VI we show how we can get it for sp(4) if the operator K is known. Unfortunately while the matrix form of K2 can be explicitly derived from definite recursion relations, the same cannot be said of K as it involves, in general, the solution of algebraic equations of high degree. Thus the conclusion, corroborated also by a classical analysis where K does not appear, is that an explicit, analytic, and closed boson realization of sp(4), and thus also of sp(2d), is only possible for particular irreps of the corresponding groups.Keywords
This publication has 36 references indexed in Scilit:
- Coherent state theory of the noncompact symplectic groupJournal of Mathematical Physics, 1984
- An analytic formula for u(3)-boson matrix elementsJournal of Mathematical Physics, 1983
- Does accidental degeneracy imply a symmetry group?Annals of Physics, 1983
- Rotational bands in the stretched sp(3, R) approximationPhysics Letters B, 1982
- Dynamical group of microscopic collective states. II. Boson representations in d dimensionsJournal of Mathematical Physics, 1982
- Dynamical group of microscopic collective states. I. One-dimensional caseJournal of Mathematical Physics, 1982
- u (3)-Boson Model of Nuclear Collective MotionPhysical Review Letters, 1981
- A recursion formula for sp(3,R) matrix elementsJournal of Mathematical Physics, 1980
- Linear Canonical Transformations and Their Unitary RepresentationsJournal of Mathematical Physics, 1971
- Noninvariance Groups in the Second-Quantization Picture and Their ApplicationsJournal of Mathematical Physics, 1970