We discuss how symmetries and conservation laws are affected when Berry’s phase occurs in a quantum system: symmetry transformations of coordinates have to be supplemented by gauge transformations of Berry’s connection, and consequently constants of motion acquire terms beyond the familiar kinematical ones. We show how symmetries of a problem determine Berry’s connection, curvature and, once a specific path is chosen, the phase as well. Moreover, higher order corrections are also fixed. We demonstrate that in some instances Berry’s curvature and phase can be removed by a globally well-defined, time-dependent canonical transformation. Finally, we describe how field theoretic anomalies may be viewed as manifestations of Berry’s phase.