Gate-refreshable nanowire chemical sensors

Abstract
ZnOnanowirefield effect transistors were implemented as highly sensitive chemical sensors for detection of NO 2 and NH 3 at room temperature. Due to a Debye screening length comparable to the nanowire diameter, the electric field applied over the back gate electrode was found to significantly affect the sensitivity as it modulates the carrier concentration. A strong negative field was utilized to refresh the sensors by an electrodesorption mechanism. In addition, different chemisorbed species could be distinguished from the “refresh” threshold voltage and the temporal response of the conductance. These results demonstrated a refreshable field effect sensor with a potential gas identification function.