Nitrogen and carbon dynamics in C3 and C4 estuarine marsh plants grown under elevated CO2 in situ

Abstract
Carbon dioxide concentrations were elevated in three estuarine communities for an entire growing season. Open top chambers were used to raise CO2 concentrations ca. 336 ppm above ambient in monospecific communities of Scirpus olneyi (C3) and Spartina patens (C4), and a mixed community of S. olneyi, S. patens and Distichlis spicata (C4). Nitrogen and carbon concentration (% wt) of aboveground tissue was followed throughout growth and senescence. Green shoot %N was reduced and %C was unchanged under elevated CO2 in S. olneyi. This resulted in a 20%–40% increase in tissue C/N ratio. There was no effect of CO2 on either C4 species. Maximum aboveground N (g/m2) was unchanged in S. olneyi, indicating that increased productivity under elevated CO2 was dependent on reallocation of stored N. There was no change in the N recovery efficiency of S. olneyi in pure stand and a decrease in the mixed community. Litter C/N ratio was not affected by elevated CO2 suggesting that decomposition and N mineralization rates will also remain unchanged. Continued growth responses to elevated CO2 could, however, be limited by the ability of S. olneyi to increase the total aboveground N pool.