Comparison of Tropospheric Temperatures from Radiosondes and Satellites: 1979–98

Abstract
A comprehensive comparison is made between two tropospheric temperature datasets over the period 1979–98: the most recent and substantially revised (version d) microwave sounding unit (MSU) channel 2 data retrievals, and a gridded radiosonde analysis provided by the Hadley Centre of the U.K. Meteorological Office. The latter is vertically weighted to approximate the deep layer temperatures measured by the satellite data. At individual grid points, there is good overall agreement among monthly anomalies, especially over the Northern Hemisphere continents where the climate signal is large, although monthly root-mean-square (rms) differences typically exceed 0.6°C. Over the Tropics, correlations are lower and rms differences can be as large as the standard deviations of monthly anomalies. Differences in the gridpoint variances are significant at many locations, which presumably reflects sources of noise in one or both measurement systems. It is often argued for climate purposes that temperature anomalies are... A comprehensive comparison is made between two tropospheric temperature datasets over the period 1979–98: the most recent and substantially revised (version d) microwave sounding unit (MSU) channel 2 data retrievals, and a gridded radiosonde analysis provided by the Hadley Centre of the U.K. Meteorological Office. The latter is vertically weighted to approximate the deep layer temperatures measured by the satellite data. At individual grid points, there is good overall agreement among monthly anomalies, especially over the Northern Hemisphere continents where the climate signal is large, although monthly root-mean-square (rms) differences typically exceed 0.6°C. Over the Tropics, correlations are lower and rms differences can be as large as the standard deviations of monthly anomalies. Differences in the gridpoint variances are significant at many locations, which presumably reflects sources of noise in one or both measurement systems. It is often argued for climate purposes that temperature anomalies are...

This publication has 0 references indexed in Scilit: