Evidence for a Significant Role of α3-Containing GABAAReceptors in Mediating the Anxiolytic Effects of Benzodiazepines

Abstract
The GABAA receptor subtypes responsible for the anxiolytic effects of nonselective benzodiazepines (BZs) such as chlordiazepoxide (CDP) and diazepam remain controversial. Hence, molecular genetic data suggest that α2-rather than α3-containing GABAA receptors are responsible for the anxiolytic effects of diazepam, whereas the anxiogenic effects of an α3-selective inverse agonist suggest that an agonist selective for this subtype should be anxiolytic. We have extended this latter pharmacological approach to identify a compound, 4,2′-difluoro-5′-[8-fluoro-7-(1-hydroxy-1-methylethyl)imidazo[1,2-á]pyridin-3-yl]biphenyl-2-carbonitrile (TP003), that is an α3 subtype selective agonist that produced a robust anxiolytic-like effect in both rodent and non-human primate behavioral models of anxiety. Moreover, in mice containing a point mutation that renders α2-containing receptors BZ insensitive (α2H101R mice), TP003 as well as the nonselective agonist CDP retained efficacy in a stress-induced hyperthermia model. Together, these data show that potentiation of α3-containing GABAA receptors is sufficient to produce the anxiolytic effects of BZs and that α2 potentiation may not be necessary.