Determining the Membrane Topology of Peptides by Fluorescence Quenching
- 9 December 1999
- journal article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 39 (1) , 161-170
- https://doi.org/10.1021/bi991836l
Abstract
Determination of the topology of peptides in membranes is important for characterizing and understanding the interactions of peptides with membranes. We describe a method that uses fluorescence quenching arising from resonance energy transfer ("FRET") for determining the topology of the tryptophan residues of peptides partitioned into phospholipid bilayer vesicles. This is accomplished through the use of a novel lyso-phospholipid quencher (lysoMC), N-(7-hydroxyl-4-methylcoumarin-3-acetyl)-1-palmitoyl-2-hydroxy-sn-gly cero-3-phosphoethanolamine. The design principle was to anchor the methylcoumarin quencher in the membrane interface by attaching it to the headgroup of lyso-phosphoethanolamine. We show that lysoMC can be incorporated readily into large unilamellar phospholipid vesicles to yield either symmetrically (both leaflets) or asymmetrically (outer leaflet only) labeled bilayers. LysoMC quenches the fluorescence of membrane-bound tryptophan by the Förster mechanism with an apparent R(0) that is comparable to the thickness of the hydrocarbon core of a lipid bilayer (approximately 25 A). Consequently, the methylcoumarin acceptor predominantly quenches tryptophans that reside in the same monolayer as the probe. The topology of a peptide's tryptophan in membranes can be determined by comparing the quenching in symmetric and asymmetric lysoMC-labeled vesicles. Because it is essential to know that asymmetrically incorporated lysoMC remains so under all conditions, we also developed a second type of FRET experiment for assessing the rate of transbilayer diffusion (flip-flop) of lysoMC. Except in the presence of pore-forming peptides, there was no measurable flip-flop of lysoMC, indicating that asymmetric distributions of quencher are stable. We used these methods to show that N-acetyl-tryptophan-octylamide and tryptophan-octylester rapidly equilibrate across phosphatidylcholine (POPC) and phosphatidylglycerol (POPG) bilayers, while four amphipathic model peptides remain exclusively on the outer monolayer. The topology of the amphipathic peptide melittin bound to POPC could not be determined because it induced rapid flip-flop of lysoMC. Interestingly, melittin did not induce lysoMC flip-flop in POPG vesicles and was found to remain stably on the external monolayer.Keywords
This publication has 12 references indexed in Scilit:
- The actions of melittin on membranesPublished by Elsevier ,2003
- An amphipathic α-helix at a membrane interface: a structural study using a novel X-ray diffraction method 1 1Edited by D. C. ReesJournal of Molecular Biology, 1999
- MEMBRANE PROTEIN FOLDING AND STABILITY: Physical PrinciplesAnnual Review of Biophysics, 1999
- Hydrophobic interactions of peptides with membrane interfacesBiochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1998
- Pore formation and translocation of melittinBiophysical Journal, 1997
- Exchange of monooleoylphosphatidylcholine with single egg phosphatidylcholine vesicle membranesBiophysical Journal, 1996
- Lipid membrane permeability of modified c[D‐Pen2, D‐pen5]enkephalin peptidesInternational Journal of Peptide and Protein Research, 1996
- The function of tryptophan residues in membrane proteinsProtein Engineering, Design and Selection, 1992
- Fluorescence quenching of cytochrome b5 in vesicles with an asymmetric transbilayer distribution of brominated phosphatidylcholine.Journal of Biological Chemistry, 1986
- An analytic solution to the Förster energy transfer problem in two dimensionsBiophysical Journal, 1979