Storm-Associated Microwave Radiometric Signatures in the Frequency Range of 90–220 GHz

Abstract
Radiometric measurements were made by a millimeter-wave imaging radiometer (MIR) at the frequencies of 89, 150, 183.3 ± 1, 183.3 ± 3, 183.3 ± 7, and 220 GHz aboard the NASA ER-2 aircraft at an altitude of about 20 km over two rainstorms: one in the western Pacific Ocean on 19 January 1993 and another in southern Florida on 5 October 1993. These measurements were complemented by nearly simultaneous observations by other sensors aboard the same aircraft and another aircraft flying along the same path. Analysis of data from these measurements, aided by radiative transfer and radar reflectivity calculations of hydrometeor profiles, which are generated by a general cloud ensemble model, demonstrates the utility of these frequencies for studying the structure of frozen hydrometeors associated with storms. Particular emphasis is placed on the three water vapor channels near 183.3 GHz. Results show that the radiometric signatures measured by these channels over the storm-associated scattering media bear ... Abstract Radiometric measurements were made by a millimeter-wave imaging radiometer (MIR) at the frequencies of 89, 150, 183.3 ± 1, 183.3 ± 3, 183.3 ± 7, and 220 GHz aboard the NASA ER-2 aircraft at an altitude of about 20 km over two rainstorms: one in the western Pacific Ocean on 19 January 1993 and another in southern Florida on 5 October 1993. These measurements were complemented by nearly simultaneous observations by other sensors aboard the same aircraft and another aircraft flying along the same path. Analysis of data from these measurements, aided by radiative transfer and radar reflectivity calculations of hydrometeor profiles, which are generated by a general cloud ensemble model, demonstrates the utility of these frequencies for studying the structure of frozen hydrometeors associated with storms. Particular emphasis is placed on the three water vapor channels near 183.3 GHz. Results show that the radiometric signatures measured by these channels over the storm-associated scattering media bear ...

This publication has 0 references indexed in Scilit: