A photonic bandgap (PBG) structure for guiding and suppressing surface waves in millimeter-wave antennas

Abstract
Periodic and regular metal posts, a photonic bandgap (PBG) structure for guiding surface waves in a parallel-plate waveguide is proposed. The isotropic PBG structure is applied to the design of an asymmetric parallel-plate waveguide Luneburg lens (APWLL). The relation between the dimensions of the metal posts and the required refraction index in the lens is derived with transmission-line theory and the transverse resonance method. Different lattices for the entire lens are also investigated. For verification, an antenna for a 76.5 GHz adaptive-cruise control radar is fabricated, consisting of an APWLL, a primary feed, and symmetric corrugated flares to improve the property of the antenna in elevation. Measured results verify the PBG structure design in the APWLL.

This publication has 11 references indexed in Scilit: