Reductive genome evolution in Buchnera aphidicola
Top Cited Papers
Open Access
- 9 January 2003
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 100 (2) , 581-586
- https://doi.org/10.1073/pnas.0235981100
Abstract
We have sequenced the genome of the intracellular symbiont Buchnera aphidicola from the aphid Baizongia pistacea. This strain diverged 80–150 million years ago from the common ancestor of two previously sequenced Buchnera strains. Here, a field-collected, nonclonal sample of insects was used as source material for laboratory procedures. As a consequence, the genome assembly unveiled intrapopulational variation, consisting of ≈1,200 polymorphic sites. Comparison of the 618-kb (kbp) genome with the two other Buchnera genomes revealed a nearly perfect gene-order conservation, indicating that the onset of genomic stasis coincided closely with establishment of the symbiosis with aphids, ≈200 million years ago. Extensive genome reduction also predates the synchronous diversification of Buchnera and its host; but, at a slower rate, gene loss continues among the extant lineages. A computational study of protein folding predicts that proteins in Buchnera, as well as proteins of other intracellular bacteria, are generally characterized by smaller folding efficiency compared with proteins of free living bacteria. These and other degenerative genomic features are discussed in light of compensatory processes and theoretical predictions on the long-term evolutionary fate of symbionts like Buchnera.Keywords
This publication has 43 references indexed in Scilit:
- Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidiaNature Genetics, 2002
- GroEL buffers against deleterious mutationsNature, 2002
- Accumulation of Deleterious Mutations in Endosymbionts: Muller’s Ratchet with Two Levels of SelectionThe American Naturalist, 2000
- Characterization of the Unique C Terminus of theEscherichia coli τ DnaX ProteinJournal of Biological Chemistry, 2000
- Improved microbial gene identification with GLIMMERNucleic Acids Research, 1999
- Neutral Evolution of Model Proteins: Diffusion in Sequence Space and OverdispersionJournal of Theoretical Biology, 1999
- Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Research, 1997
- tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic SequenceNucleic Acids Research, 1997
- Strategies for whole microbial genome sequencing and analysisElectrophoresis, 1997
- Endosymbiosis of Animals with Plant MicroorganismsMycologia, 1968