An Automated Method to Estimate Tropical Cyclone Intensity Using SSM/I Imagery

Abstract
An automated method to estimate tropical cyclone intensity using Special Sensor Microwave Imager (SSM/I) data is developed and tested. SSM/I images (512 km × 512 km) centered on a given tropical cyclone (TC), with a known best-track intensity, are collected for 142 different TCs (1988–98) from the North Pacific, Atlantic, and Indian Oceans. Over 100 characteristic features are computed from the 85-GHz (H-pol) imagery data and the derived rain-rate imagery data associated with each TC. Of the 1040 sample images, 942 are selected as training samples. These training samples are examined in a feature-selection algorithm to select an optimal subset of the characteristic features that could accurately estimate TC intensity on unknown samples in a K-nearest-neighbor (K-NN) algorithm. Using the 15 selected features as the representative vector and the best-track intensity as the ground truth, the 98 testing samples (taken from four TCs) are presented to the K-NN algorithm. A root-mean-square error (rmse)... Abstract An automated method to estimate tropical cyclone intensity using Special Sensor Microwave Imager (SSM/I) data is developed and tested. SSM/I images (512 km × 512 km) centered on a given tropical cyclone (TC), with a known best-track intensity, are collected for 142 different TCs (1988–98) from the North Pacific, Atlantic, and Indian Oceans. Over 100 characteristic features are computed from the 85-GHz (H-pol) imagery data and the derived rain-rate imagery data associated with each TC. Of the 1040 sample images, 942 are selected as training samples. These training samples are examined in a feature-selection algorithm to select an optimal subset of the characteristic features that could accurately estimate TC intensity on unknown samples in a K-nearest-neighbor (K-NN) algorithm. Using the 15 selected features as the representative vector and the best-track intensity as the ground truth, the 98 testing samples (taken from four TCs) are presented to the K-NN algorithm. A root-mean-square error (rmse)...