Mesenchymal Stem Cell Transition to Tumor-Associated Fibroblasts Contributes to Fibrovascular Network Expansion and Tumor Progression
Top Cited Papers
Open Access
- 7 April 2009
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLOS ONE
- Vol. 4 (4) , e4992
- https://doi.org/10.1371/journal.pone.0004992
Abstract
Tumor associated fibroblasts (TAF), are essential for tumor progression providing both a functional and structural supportive environment. TAF, known as activated fibroblasts, have an established biological impact on tumorigenesis as matrix synthesizing or matrix degrading cells, contractile cells, and even blood vessel associated cells. The production of growth factors, cytokines, chemokines, matrix-degrading enzymes, and immunomodulatory mechanisms by these cells augment tumor progression by providing a suitable environment. There are several suggested origins of the TAF including tissue-resident, circulating, and epithelial-to-mesenchymal-transitioned cells. We provide evidence that TAF are derived from mesenchymal stem cells (MSC) that acquire a TAF phenotype following exposure to or systemic recruitment into adenocarcinoma xenograft models including breast, pancreatic, and ovarian. We define the MSC derived TAF in a xenograft ovarian carcinoma model by the immunohistochemical presence of 1) fibroblast specific protein and fibroblast activated protein; 2) markers phenotypically associated with aggressiveness, including tenascin-c, thrombospondin-1, and stromelysin-1; 3) production of pro-tumorigenic growth factors including hepatocyte growth factor, epidermal growth factor, and interleukin-6; and 4) factors indicative of vascularization, including alpha-smooth muscle actin, desmin, and vascular endothelial growth factor. We demonstrate that under long-term tumor conditioning in vitro, MSC express TAF–like proteins. Additionally, human MSC but not murine MSC stimulated tumor growth primarily through the paracrine production of secreted IL6. Our results suggest the dependence of in vitro Skov-3 tumor cell proliferation is due to the presence of tumor-stimulated MSC secreted IL6. The subsequent TAF phenotype arises from the MSC which ultimately promotes tumor growth through the contribution of microvascularization, stromal networks, and the production of tumor-stimulating paracrine factors.Keywords
This publication has 59 references indexed in Scilit:
- Bone Marrow Multipotent Mesenchymal Stroma Cells Act as Pericyte-like Migratory Vehicles in Experimental GliomasMolecular Therapy, 2009
- Migratory neighbors and distant invaders: tumor-associated niche cellsGenes & Development, 2008
- Significance of Tumor-Associated Stroma in Promotion of Intratumoral LymphangiogenesisThe American Journal of Pathology, 2008
- Hepatocyte growth factor induces epithelial cell motility through transactivation of the epidermal growth factor receptorExperimental Cell Research, 2007
- Stromal Myofibroblasts Predict Disease Recurrence for Colorectal CancerClinical Cancer Research, 2007
- Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcomaThe Journal of Experimental Medicine, 2006
- Fibroblasts in cancerNature Reviews Cancer, 2006
- Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statementCytotherapy, 2006
- Mesenchymal Stem Cells Can Be Differentiated Into Endothelial Cells In VitroThe International Journal of Cell Cloning, 2004
- Mechanism of Regulation of HGF/SF Gene Expression in Fibroblasts by TGF-β1Biochemical and Biophysical Research Communications, 2000