Finite Deformation and Nonlinear Elastic Behavior of Flexible Composites

Abstract
The flexible composites discussed in this paper are composed of continuous fibers in an elastomeric matrix. The usable range of deformation of these composites is much larger than that of conventional rigid composites. Due to the material as well as geometric factors, the stress-strain relations for these composites are generally nonlinear under finite deformations. A constitutive model has been developed based upon the Eulerian description. The material nonlinear stress-strain relation is derived by using the stress energy density referring to the deformed volume. The stretching-shear coupling and the effects of the in-plane reorientation of fibers are also considered in the theoretical analysis. Comparisons are made between predictions of the present theory and experimental data for tirecord/rubber and Kevlar/silicone-elastomer flexible composite laminae; very good correlations have been found.

This publication has 0 references indexed in Scilit: