Role of titin in vertebrate striated muscle
Open Access
- 28 February 2002
- journal article
- review article
- Published by The Royal Society in Philosophical Transactions Of The Royal Society B-Biological Sciences
- Vol. 357 (1418) , 199-206
- https://doi.org/10.1098/rstb.2001.1028
Abstract
Titin is a giant muscle protein with a molecular weight in the megaDalton range and a contour length of more than 1 μm. Its size and location within the sarcomere structure determine its important role in the mechanism of muscle elasticity. According to the current consensus, elasticity stems directly from more than one type of spring–like behaviour of the I–band portion of the molecule. Starting from slack length, extension of the sarcomere first causes straightening of the molecule. Further extension then induces local unfolding of a unique sequence, the PEVK region, which is named due to the preponderance of these amino–acid residues. High speeds of extension and/or high forces are likely to lead to unfolding of the β–sandwich domains from which the molecule is mainly constructed. A release of tension leads to refolding and recoiling of the polypeptide. Here, we review the literature and present new experimental material related to the role of titin in muscle elasticity. In particular, we analyse the possible influence of the arrangement and environment of titin within the sarcomere structure on its extensible behaviour. We suggest that, due to the limited conformational space, elongation and compression of the molecule within the sarcomere occur in a more ordered way or with higher viscosity and higher forces than are observed in solution studies of the isolated protein.Keywords
This publication has 70 references indexed in Scilit:
- Flexibility and extensibility in the titin molecule: analysis of electron microscope dataJournal of Molecular Biology, 2001
- Titin and the sarcomere symmetry paradoxJournal of Molecular Biology, 2001
- Direct visualization of extensibility in isolated titin moleculesJournal of Molecular Biology, 1997
- Towards a Molecular Understanding of the Elasticity of TitinJournal of Molecular Biology, 1996
- Cytoskeleton: Titin as a scaffold and springCurrent Biology, 1996
- Elastic filaments in situ in cardiac muscle: deep-etch replica analysis in combination with selective removal of actin and myosin filaments.The Journal of cell biology, 1993
- Visualization of the polarity of isolated titin molecules: a single globular head on a long thin rod as the M band anchoring domain?The Journal of cell biology, 1989
- Myofibrils Bear Most of the Resting Tension in Frog Skeletal MuscleScience, 1985
- Purification and properties of native titinJournal of Molecular Biology, 1984
- End-filaments: A new structural element of vertebrate skeletal muscle thick filamentsJournal of Molecular Biology, 1981