Phosphatase and tensin homologue deleted on chromosome ten (PTEN) as a molecular target in lung epithelial wound repair
- 1 December 2007
- journal article
- Published by Wiley in British Journal of Pharmacology
- Vol. 152 (8) , 1172-1184
- https://doi.org/10.1038/sj.bjp.0707501
Abstract
Epithelial injury contributes to lung pathogenesis. Our work and that of others have identified the phosphoinositide-3 kinase (PI3K)/Akt pathway as a vital component of survival in lung epithelia. Therefore, we hypothesized that pharmacological inhibition of PTEN, a major suppressor of this pathway, would enhance wound closure and restore lung epithelial monolayer integrity following injury. We evaluated the ability of two bisperoxovanadium derivatives, bpV(phen) and bpV(pic), in differentiated primary human airway epithelia and BEAS2B cultures for their ability to inhibit PTEN, activate the PI3K/Akt pathway and restore epithelial monolayer integrity following mechanical injury. BpV(phen) and bpV(pic) induced Akt phosphorylation in primary and BEAS2B cells in a dose and time dependent manner. Minimal toxicity was observed as measured by lactate dehydrogenase (LDH) release. To verify that Akt phosphorylation is specifically induced by PTEN inhibition, the PTEN positive cell line, DU145, and two PTEN negative cell lines, LNCaP and PC3, were examined. PTEN positive cells demonstrated a dose responsive increase in Akt phosphorylation whereas PTEN negative cells showed no response indicating that bpV(phen) directly suppresses PTEN without affecting auxiliary pathways. Next, we observed that exposure to either compound resulted in accelerated wound closure following mechanical injury. Similar effects were observed after transfection with a dominant negative isoform of PTEN and PTEN specific siRNA. From these studies, we conclude that PTEN is a valid target for future studies directed at restoring epithelial barrier function after lung injury.Keywords
This publication has 37 references indexed in Scilit:
- Airway Epithelial Repair, Regeneration, and Remodeling after Injury in Chronic Obstructive Pulmonary DiseaseProceedings of the American Thoracic Society, 2006
- Mechanisms of pulmonary edema clearanceAmerican Journal of Physiology-Lung Cellular and Molecular Physiology, 2005
- Protection of Epithelial Cells by Keratincoyte Growth Factor SignalingProceedings of the American Thoracic Society, 2005
- Bisperoxovanadium compounds are potent PTEN inhibitorsFEBS Letters, 2004
- Airway remodeling in asthma: New insightsJournal of Allergy and Clinical Immunology, 2003
- The Phosphoinositide 3-Kinase PathwayScience, 2002
- Activated Akt Protects the Lung from Oxidant-Induced Injury and Delays Death of MiceThe Journal of Experimental Medicine, 2001
- Crystal Structure of the PTEN Tumor SuppressorCell, 1999
- Negative Regulation of PKB/Akt-Dependent Cell Survival by the Tumor Suppressor PTENCell, 1998
- PTEN , a Putative Protein Tyrosine Phosphatase Gene Mutated in Human Brain, Breast, and Prostate CancerScience, 1997