Effect of polymer foam morphology and density on kinetics ofin vitro controlled release of isoniazid from compressed foam matrices
- 1 April 1997
- journal article
- research article
- Published by Wiley in Journal of Biomedical Materials Research
- Vol. 35 (1) , 107-116
- https://doi.org/10.1002/(sici)1097-4636(199704)35:1<107::aid-jbm11>3.0.co;2-g
Abstract
The purpose of this study was to compare the effect of polymer foam morphology and density prior to compaction on the kinetics of isoniazid (INH) release from the final high-density extruded matrices. The feasibility of preparing low density foams of several biopolymers, including poly(L-lactide) (PLLA), poly(glycolide) (PGA), poly(DL-lactide-co-glycolide) (PLGA), poly(γ-benzyl-L-glutamate) (PBLG), and poly(propylene fumarate) (PPF), via a lyophilization technique was investigated. Low-density foams of PLGA, PBLG, and a mixture of PLGA and PPF were successfully fabricated by lyophilization of the frozen polymer solutions either in glacial acetic acid or in benzene. The morphology of these foams depends on the polymer as well as the solvent used in the fabrication process. Thus, PLGA produces a capillary structure when lyophilized from benzene solution and a leaflet structure from glacial acetic acid, but PBLG yields a leaflet structure from benzene. Matrices were prepared by impregnating these foams with aqueous solutions of INH, removing the water by a second lyophilization, and then compressing the low-density INH containing foams by compaction and high-pressure extrusion. The resulting nonporous matrices had densities of approximately 1.30 g/cm3. In vitro kinetics were in accord with the Roseman-Higuchi diffusion model and demonstrate that release rates depend on the initial foam density, while foam structure has little influence on the release kinetics. © 1997 John Wiley & Sons, Inc.Keywords
This publication has 9 references indexed in Scilit:
- Low-density poly(dl-lactide-co-glycolide) foams for prolonged release of isoniazidJournal of Controlled Release, 1996
- In vitro controlled release of isoniazid from poly (lactide-co-glycolide) matricesJournal of Controlled Release, 1994
- The use of polylactic acid matrix and periosteal grafts for the reconstruction of rabbit knee articular defectsJournal of Biomedical Materials Research, 1991
- Use of porous biodegradable polymer implants in meniscus reconstruction. 2) Biological evaluation of porous biodegradable polymer implants in menisciColloid and Polymer Science, 1990
- Porous Polymers for Biological FixationPublished by Wolters Kluwer Health ,1988
- Antibiotic release from an experimental biodegradable bone cementJournal of Orthopaedic Research, 1988
- Porous Biodegradable Microspheres for Controlled Drug Delivery. I. Assessment of Processing Conditions and Solvent Removal TechniquesPharmaceutical Research, 1988
- Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systemsJournal of Controlled Release, 1986
- Release of Medroxyprogesterone Acetate from a Silicone PolymerJournal of Pharmaceutical Sciences, 1970