Spatio‐temporal characterization of polyhydroxybutyrate accumulation in sugarcane
Open Access
- 28 November 2006
- journal article
- Published by Wiley in Plant Biotechnology Journal
- Vol. 5 (1) , 173-184
- https://doi.org/10.1111/j.1467-7652.2006.00230.x
Abstract
We report here the results from a glasshouse trial of several transgenic sugarcane (Saccharum spp. hybrids) lines accumulating the bacterial polyester polyhydroxybutyrate (PHB) in plastids. The aims of the trial were to characterize the spatio-temporal pattern of PHB accumulation at a whole-plant level, to identify factors limiting PHB production and to determine whether agronomic performance was affected adversely by PHB accumulation. Statistical analysis showed that a vertical PHB concentration gradient existed throughout the plant, the polymer concentration being lowest in the youngest leaves and increasing with leaf age. In addition, there was a horizontal gradient along the length of a leaf, with the PHB concentration increasing from the youngest part of the leaf (the base) to the oldest (the tip). The rank order of the lines did not change over time. Moreover, there was a uniform spatio-temporal pattern of relative PHB accumulation among the lines, despite the fact that they showed marked differences in absolute PHB concentration. Molecular analysis revealed that the expression of the transgenes encoding the PHB biosynthesis enzymes was apparently coordinated, and that there were good correlations between PHB concentration and the abundance of the PHB biosynthesis enzymes. The maximum recorded PHB concentration, 1.77% of leaf dry weight, did not confer an agronomic penalty. The plant height, total aerial biomass and culm-internode sugar content were not affected relative to controls. Although moderate PHB concentrations were achieved in leaves, the maximum total-plant PHB yield was only 0.79% (11.9 g PHB in 1.51 kg dry weight). We combine the insights from our statistical and molecular analyses to discuss possible strategies for increasing the yield of PHB in sugarcane.Keywords
This publication has 17 references indexed in Scilit:
- Production of polyhydroxybutyrate in sugarcanePlant Biotechnology Journal, 2006
- Inducible Trans-activation of Plastid Transgenes: Expression of the R. eutrophaphb Operon in Transplastomic TobaccoPlant and Cell Physiology, 2005
- Engineering Cytoplasmic Male Sterility via the Chloroplast Genome by Expression of β-KetothiolasePlant Physiology, 2005
- A novel thiolase–reductase gene fusion promotes the production of polyhydroxybutyrate in ArabidopsisPlant Biotechnology Journal, 2005
- Constitutive Expression of the β-Ketothiolase Gene in Transgenic Plants. A Major Obstacle for Obtaining Polyhydroxybutyrate-Producing PlantsPlant Physiology, 2002
- Polyhydroxyalkanoate Polymers and Their Production in Transgenic PlantsMetabolic Engineering, 2002
- Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weightPlanta, 2000
- Cotton Crop Improvement Through Genetic EngineeringCritical Reviews in Biotechnology, 1997
- Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation.Proceedings of the National Academy of Sciences, 1994
- Expression of tandem gene fusions in transgenic tobacco plantsNucleic Acids Research, 1987