Membrane chaperone Shr3 assists in folding amino acid permeases preventing precocious ERAD
Open Access
- 26 February 2007
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 176 (5) , 617-628
- https://doi.org/10.1083/jcb.200612100
Abstract
The yeast endoplasmic reticulum (ER) membrane-localized chaperone Shr3 plays a critical role in enabling amino acid permeases (AAPs) to fold and attain proper structures required for functional expression at the plasma membrane. In the absence of Shr3, AAPs specifically accumulate in the ER, where despite the correct insertion of their 12 transmembrane segments (TMSs), they aggregate forming large molecular weight complexes. We show that Shr3 prevents aggregation and facilitates the functional assembly of independently coexpressed N- and C-terminal fragments of the general AAP Gap1. Shr3 interacts with and maintains the first five TMSs in a conformation that can posttranslationally assemble with the remaining seven TMSs. We also show that Doa10- and Hrd1-dependent ER-associated degradation (ERAD) pathways redundantly degrade AAP aggregates. In combination, doa10Δ hrd1Δ mutations stabilize AAP aggregates and partially suppress amino acid uptake defects of shr3 mutants. Consequently, in cells with impaired ERAD, AAPs are able to attain functional conformations independent of Shr3. These findings illustrate that folding and degradation are tightly coupled processes during membrane protein biogenesis.Keywords
This publication has 65 references indexed in Scilit:
- Sequential Quality-Control Checkpoints Triage Misfolded Cystic Fibrosis Transmembrane Conductance RegulatorCell, 2006
- Distinct Ubiquitin-Ligase Complexes Define Convergent Pathways for the Degradation of ER ProteinsCell, 2006
- Molecular Chaperones and Protein Quality ControlCell, 2006
- Protein Sensors for Membrane SterolsCell, 2006
- INSIG: a broadly conserved transmembrane chaperone for sterol-sensing domain proteinsThe EMBO Journal, 2005
- Role of YidC in folding of polytopic membrane proteinsThe Journal of cell biology, 2004
- X-ray structure of a protein-conducting channelNature, 2003
- Structure and Mechanism of the Lactose Permease of Escherichia coliScience, 2003
- The Npr1 Kinase Controls Biosynthetic and Endocytic Sorting of the Yeast Gap1 PermeasePublished by Elsevier ,2001
- A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulumNature, 1993