Alignment of Amino Acid and DNA Sequences of Human Proline-rich Proteins

Abstract
Human proline-rich proteins (PRPs) constitute a complex family of salivary proteins that are encoded by a small number of genes. The primary gene product is cleaved by proteases, thereby giving rise to about 20 secreted proteins. To determine the genes for the secreted PRPs, therefore, it is necessary to obtain sequences of both the secreted proteins and the DNA encoding these proteins. We have sequenced most PRPs from one donor (D.K.) and aligned the protein sequences with available DNA sequences from unrelated individuals. Partial sequence data have now been obtained for an additional PRP from D.K. named II-1. This protein was purified from parotid saliva by gel filtration and ion-exchange chromatography. Peptides were obtained by cleavage with trypsin, clostripain, and N-bromosuccinimide, followed by column chromatography. The peptides were sequenced on a gas-phase protein sequenator. Overlapping peptide sequences were obtained for most of II-1 and aligned with translated DNA sequences. The best fit was obtained with clones containing sequences for the allele PRB4" (Lyons et al., 1988). However, there was not complete identity of the protein amino acid sequence and the DNA-derived sequences, indicating that II-1 is not encoded by PRB4". Other PRPs isolated from D.K. also fail to conform to any DNA structure so far reported. This shows the need to obtain amino acid sequences and corresponding DNA sequences from the same person to assign genes for the PRPs and to determine the location of the postribosomal cleavage points in the primary translation product.