Visual Control of Discrete Aiming Movements

Abstract
An experiment is reported which investigated the visual control of discrete rapid arm movements. Subjects were required to move as rapidly as possible to several target width-movement distance combinations under both visual and non-visual conditions. The movement time (MT) data were supportive of Fitts' Law in that MT was linearly related and highly correlated to the Index of Difficulty (ID). MT was also similar for different target width-distance combinations sharing the same ID value. The error rate analysis, which compared visual to non-visual Performance, indicated that vision was only used, and to varying degrees, when MT exceeded 200 ms (3.58 ID level). There was some evidence that vision was differentially used within target width-distance combinations sharing the same ID. Estimates of endpoint variability generally reflected the results of the error rate analysis. These results do not support the discrete correction model of Fitts' Law proposed by Keele (1968).

This publication has 20 references indexed in Scilit: