The potential of dielectrophoresis for single-cell experiments

Abstract
In this article, a microfluidic system was developed for sorting and high-content analysis of single cells using dielectrophoresis. It makes high-resolution imaging of suspended cells feasible immediately before depositing them into a microtiter plate. The microfluidic devices contain three-dimensional arrangements of radio-frequency driven electrodes and are used to gently manipulate suspended cells in flow. Viability of sorted and deposited cells is comparable to a control group. The influence of RF electric fields is studied using (a) calcium flux measurements and membrane potential dependent fluorescence dye on suspended human cells and (b) cultivation of yeast trapped for several days in dielectric field cages driven at field strengths up to 100 kV/m and 7 MHz.