Comparison of protein fragments identified by limited proteolysis and by computational cutting of proteins
- 1 July 2002
- journal article
- research article
- Published by Wiley in Protein Science
- Vol. 11 (7) , 1753-1770
- https://doi.org/10.1110/ps.4100102
Abstract
Here we present a comparison between protein fragments produced by limited proteolysis and those identified by computational cutting based on the building block folding model. The principles upon which the two methods are based are different. Limited proteolysis of natively folded proteins occurs at flexible sites and never at the level of chain segments of regular secondary structure such as alpha-helices. Therefore, the targets for limited proteolysis are locally unfolded regions. In contrast, the computational cutting algorithm considers the compactness of the fragments, their nonpolar buried surface area, and their isolatedness, that is, the surface area which was buried prior to the cutting and becomes exposed subsequently. Despite the different criteria, there is an overall correspondence between sites or regions of limited proteolysis with those identified by computational cutting. The computational cutting method has been applied to several model proteins for which detailed limited proteolysis data are available, namely apomyoglobin, cytochrome c, ribonuclease A, alpha-lactalbumin, and thermolysin. As expected, more cuts are obtained computationally than experimentally and the agreement is better when a number of proteolytic enzymes are used. For example, cytochrome c is cleaved by thermolysin at 56-57, 45-46, and at 80-81, and by proteinase K at 48-49 and 50-51. Incubation of the noncovalent and native-like complex of cytochrome c fragments 1-56 and 57-104 with proteinase K yielded the gapped protein species 1-48/57-104 and finally 1-40/57-104. Computational cutting of cytochrome c reproduced the major experimental observations, with cuts at 47, 64-65 or 65-66 and 80-81 and an unstable 32-47 region not assigned to any building block. The next step, not addressed in this work, is to probe the ability of the generated fragments to fold independently. Since both the computational algorithm and limited proteolysis attempt to dissect the protein folding problem, the general agreement between the two procedures is gratifying. This consistency allows us to propose the use of limited proteolysis to produce protein fragments that can adopt an independent folding and, therefore, to study folding intermediates. The results of the present study appear to validate the building block folding model and are in line with the proposal that protein folding is a hierarchical process, where parts constituting local minima of energy fold first, with their subsequent association and mutual stabilization to finally yield the global fold.Keywords
This publication has 86 references indexed in Scilit:
- On the size of the active site in proteases. I. PapainPublished by Elsevier ,2005
- Folding and binding cascades: Dynamic landscapes and population shiftsProtein Science, 2000
- The foldon universe: a survey of structural similarity and self-recognition of independently folding units 1 1Edited by F. E. CohenJournal of Molecular Biology, 1997
- Probing the conformational state of apomyoglobin by limited proteolysis 1 1Edited by P. E. WrightJournal of Molecular Biology, 1997
- Intermediate States in Protein FoldingJournal of Molecular Biology, 1996
- Different Subdomains are Most Protected From Hydrogen Exchange in the Molten Globule and Native States of Human α-LactalbuminJournal of Molecular Biology, 1995
- Helicity, Circular Dichroism and Molecular Dynamics of ProteinsJournal of Molecular Biology, 1994
- Hierarchic organization of domains in globular proteinsJournal of Molecular Biology, 1979
- The protein data bank: A computer-based archival file for macromolecular structuresJournal of Molecular Biology, 1977
- Nucleation, Rapid Folding, and Globular Intrachain Regions in ProteinsProceedings of the National Academy of Sciences, 1973