Abstract
We report on a novel hybrid FlexX/FlexS docking approach, whereby the base fragment of the test ligand is chosen by FlexS superposition onto a cocrystallized template ligand and then fed into FlexX for the incremental construction of the final solution. The new approach is tested on the diverse 200 protein−ligand complex dataset that has been previously described (Kramer et al. Proteins:  Struct., Funct., Genet.1999, 37, 228−241) for FlexX validation. In total, 62.9% of the complexes can be reproduced at rank 1 by our approach, which compares favorably with 46.9% when using FlexX alone. In addition, we report “cross-docking” experiments in which several receptor structures of complexes with identical proteins have been used for docking all cocrystallized ligands of these complexes. The results show that, in almost all cases, the hybrid approach can acceptably dock a ligand into a foreign receptor structure using a different ligand template, can give solutions where FlexX alone fails, and tends to give solutions that are more accurately positioned.