Comparative analysis of the ability of leucocytes, endothelial cells and platelets to degrade the subendothelial basement membrane: Evidence for cytokine dependence and detection of a novel sulfatase
- 1 April 1995
- journal article
- research article
- Published by Wiley in Immunology & Cell Biology
- Vol. 73 (2) , 113-124
- https://doi.org/10.1038/icb.1995.19
Abstract
The subendothelial basement membrane (BM) is regarded as an important barrier to the entry of leucocytes into inflammatory sites. This study compares the ability of leucocytes, platelets and endothelial cells (EC) to degrade a [35SO4]-labelled subendothelial extracellular matrix (ECM) and assesses the effect of PMA and various pro-inflammatory cytokines on this degradative activity. The different products of degradation, identified by fast protein liquid chromatography (FPLC) gel filtration chromatography, were indicative of protease, endoglycosidase (heparanase) and exoglycosidase and/or sulfatase activity. In terms of FCM degradation, EC and platelets were the most active, with PMA stimulation further enhancing the degradative activity of these two cell types. Platelets exhibited predominantly heparanase activity whereas the FC degradation products suggested a range of enzymic activities, namely proteases, heparanases and sulfatases. Interestingly, EC in suspension expressed these three enzymic activities whereas confluent EC monolayers only exhibited sulfatase activity, suggesting that the former situation might represent an angiogenic response. In the case of leucocytes, neutrophils and lymphocytes degraded the ECM to a much greater extent than monocytes. Each cell type also differed in the predominant enzymic activities it expressed, for example, heparanase activity by lymphocytes, protease activity by neutrophils and sulfatase activity by monocytes. Furthermore, PMA stimulation was shown to have differential effects on these enzymic activities. Some pro-inflammatory cytokines were found to be cell-type specific in their effects on ECM degradation. Thus, lL-1 + TNF enhanced neutrophil and EC degradation of the ECM but inhibited lymphocyte ECM degradation. In contrast, the chemokine IL-8 enhanced ECM degradation by neutrophils, lymphocytes and EC. Of particular interest was the unique sulfatase activity expressed by EC and monocytes which was induced in FC by TNF + IL-1 and IL-8, whereas in monocytes the sulfatase activity was exclusively induced by the chemokine monocyte chemotactic and activating factor (MCAF). Collectively, the results of this study show that leucocytes differ markedly in the enzymes they express to degrade the BM during extravasation and that PMA and cytokines are cell-type specific in their induction of hydrolytic enzyme activity. These results also indicate that EC may play an important role, not only in the recruitment of leucocytes, but also via sulfatase activity in the preparation of vascular BM for leucocyte extravasion.Keywords
This publication has 38 references indexed in Scilit:
- Proteoglycans on endothelial cells present adhesion-inducing cytokines to leukocytesImmunology Today, 1993
- Cell Mediated Events that Control Blood Coagulation and Vascular InjuryAnnual Review of Cell Biology, 1993
- Heparanase activity in cultured endothelial cellsJournal of Cellular Physiology, 1991
- Evidence that sulphated polysaccharides inhibit tumour metastasis by blocking tumour‐cell‐derived heparanasesInternational Journal of Cancer, 1987
- Role of Heparanase in Platelet and Tumor Cell Interactions with the Subendothelial Extracellular MatrixSeminars in Thrombosis and Hemostasis, 1987
- Perturbation of human endothelial cells by thrombin or PMA changes the reactivity of their extracellular matrix towards platelets.The Journal of cell biology, 1987
- Murine macrophage heparanase: Inhibition and comparison with metastatic tumor cellsJournal of Cellular Physiology, 1987
- Chemotactic Activity of the Lipid Peroxidation Product 4-Hydroxynonenal and Homologous HydroxyalkenalsBiological Chemistry Hoppe-Seyler, 1986
- Sequential degradation of heparan sulfate in the subendothelial extracellular matrix by highly metastatic lymphoma cellsInternational Journal of Cancer, 1985
- Secretion by mononuclear phagocytes of lysosomal hydrolases bearing ligands for the mannose-6-phosphate receptor system of fibroblasts: Evidence for a second mechanism of spontaneous secretion?Biochemical and Biophysical Research Communications, 1982