Abstract
Scientists at the U.S. Bureau of Mines are currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic affords a mechanism for incorporating the uncertainty inherent in most control problems into conventional expert systems. Although fuzzy logic-based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective and time consuming decision. In this paper, high-performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating a cart-pole balancing system are selected using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions chosen by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the author for the cart-pole balancing problem. Thus, genetic algorithms represent a potentially effective and structured approach for designing fuzzy logic controllers.

This publication has 0 references indexed in Scilit: