The nonlinear development of disturbances in a zonal shear flow

Abstract
A study is made of the nonlinear stability of a weakly supercritical zonal shear flow in the β-plane approximation. The dynamics of initially small disturbances are examined. The main nonlinear effects are associated with the rearrangement of the critical layer. It is shown that as the wave grows in amplitude, linear regimes of the critical layer (viscous and nonstationary) change over to a nonlinear regime while the exponential law of disturbance growth becomes a power-law.

This publication has 10 references indexed in Scilit: