Molecular Mechanism of the Inhibitory Effect of Aldosterone on Endothelial NO Synthase Activity
- 1 July 2006
- journal article
- research article
- Published by Wolters Kluwer Health in Hypertension
- Vol. 48 (1) , 165-171
- https://doi.org/10.1161/01.hyp.0000226054.53527.bb
Abstract
Although the proinflammatory and profibrotic actions of aldosterone (Aldo) on the vasculature have been reported, the effects and molecular mechanisms of Aldo on endothelial function are yet to be determined. We investigated how Aldo regulates endothelial NO synthase (eNOS) function in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated for 16 hours with Aldo 10 −7 mol/L. The concentration of reactive oxygen species was estimated by measuring 2′,7′-dichlorodihydrofluorescein diacetate chemiluminescence. Signal transduction was estimated by Western immunoblots. Real-time RT-PCR was performed to measure expression of transcripts of endogenous GTP cyclohydrolase-1 and components of reduced nicotinamide-adenine dinucleotide phosphate oxidase. To eliminate the possible effect of the glucocorticoid receptor (GR) and to emphasize the role of mineralocorticoid receptor, we used GR small interfering RNA and knocked down GR expression in several experiments. NO output was estimated by intracellular cGMP concentration. Reactive oxygen species production increased significantly in Aldo-treated HUVECs but was abolished by pretreatment with eplerenone. Transcripts of p47 phox were increased by Aldo treatment. Vascular endothelial growth factor–induced eNOS Ser 1177 but not Akt Ser 473 phosphorylation levels were reduced significantly by pretreatment with Aldo. Pretreatment with either eplerenone or okadaic acid restored phosphorylation levels of eNOS Ser 1177 in Aldo-treated cells, suggesting that protein phosphatase 2A was upregulated by Aldo via mineralocorticoid receptor. The decrease in NO output caused by Aldo pretreatment was reversed significantly by 5,6,7,8-tetrahydrobiopterin, GTP cyclohydrolase-1 overexpression, or p47 phox knockdown. These results suggest that Aldo inhibits eNOS function through bimodal mechanisms of 5,6,7,8-tetrahydrobiopterin deficiency and protein phosphatase 2A activation.Keywords
This publication has 27 references indexed in Scilit:
- Mechanisms of Mineralocorticoid ActionHypertension, 2005
- Stoichiometric Relationships Between Endothelial Tetrahydrobiopterin, Endothelial NO Synthase (eNOS) Activity, and eNOS Coupling in VivoCirculation Research, 2005
- Aldosterone Stimulates Reactive Oxygen Species Production through Activation of NADPH Oxidase in Rat Mesangial CellsJournal of the American Society of Nephrology, 2005
- Rapid non‐genomic effects of aldosterone on rodent vascular functionActa Physiologica Scandinavica, 2004
- Aldosterone, mineralocorticoid receptors and vascular inflammationMolecular and Cellular Endocrinology, 2004
- Rapid Inhibition of Vasoconstriction in Renal Afferent Arterioles by AldosteroneCirculation Research, 2003
- The Effect of Spironolactone on Morbidity and Mortality in Patients with Severe Heart FailureNew England Journal of Medicine, 1999
- Coronary Artery Aneurysms, Aortic Dissection, and Hypertension Secondary to Primary Aldosteronism: A Rare TriadAngiology, 1999
- Hypoxia-induced adrenomedullin production in the kidneyKidney International, 1999
- Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone.Journal of Clinical Investigation, 1996