Internal structure of hole quasiparticles in antiferromagnets

Abstract
Holes in an Ising antiferromagnet give rise to quasiparticles with an internal structure associated with the distortion of the spin ordering. We show that the spectrum of excited states (of this internal structure) commences at a lower energy than previously thought, at an energy of the order of the exchange constant. The character of the corresponding states differ from those previously discussed in that the phases associated with the various spin configurations with the same number of spin flips differ. Moreover, these excited states dominate the optical absorption and may explain the experimental results of Thomas et al. [Phys. Rev. Lett. 61, 1313 (1988)].