Structural characterisation of macromolecular organic material in air particulate matter using Py-GC-MS and solid state 13C-NMR

Abstract
Organic air particulate matter was analysed by applying the techniques of Py-GC-MS (pyrolysis-gas chromatography-mass spectrometry) and solid state 13C-NMR (nuclear magnetic resonance). Particles dislodged from air particulate filters and humic acid extracted from these filters were studied for structural components. The structural components of the air particles and extracted humic acid consisted of compounds originating from biomacromolecules, namely, lignin, carbohydrates, protein and lipids. The main components identified for each class included: (1) methoxyphenols originating from lignin; (2) furans, aldehydes and ketones from carbohydrates; (3) pyrrole, indoles from protein; and (4) many hydrocarbons from lipid structures. Single ion monitoring (SIM) and tetramethyl ammonium hydroxide (TMAH) methylation were utilised for detection of aliphatic hydrocarbons and acidic components, respectively. Hydrocarbons ranging from C9 to C28 were detected by SIM analysis, while aliphatic acids ranged from C9 to C18. The majority of components analysed directly in the air particles were similar to those from the humic acid extracts. Many of the structural components of air particles were typical of humic substances of soil and aqueous systems and these were attributed to both biogenic and anthropogenic sources.

This publication has 0 references indexed in Scilit: