Interplay of magnetism and high-Tc superconductivity at individual Ni impurity atoms in Bi2Sr2CaCu2O8+d

Abstract
In conventional superconductors, magnetic interactions and magnetic impurity atoms are destructive to superconductivity. By contrast, in some unconventional systems, e.g. superfluid 3He and superconducting UGe2, superconductivity or superfluidity is actually mediated by magnetic interactions. A magnetic mechanism has also been proposed for high temperature superconductivity (HTSC) in which an electron magnetically polarizes its environment resulting in an attractive pairing-interaction for oppositely polarized spins. Since a magnetic impurity atom would apparently not disrupt such a pairing-interaction, it has also been proposed that the weaker influences on HTSC of magnetic Ni impurity atoms compared to those of non-magnetic Zn are evidence for a magnetic mechanism. Here we use scanning tunneling microscopy (STM) to determine directly the influence of individual Ni atoms on the electronic structure of Bi2Sr2CaCu2O8+d. Two local d-wave impurity-states are observed at each Ni. Analysis of their energies surprisingly reveals that the primary quasiparticle scattering effects of Ni atoms are due to non-magnetic interactions. Nonetheless, we also demonstrate that a magnetic moment coexists with unimpaired superconductivity at each Ni site. We discuss the implications of these phenomena, and those at Zn, for the pairing-mechanism.
All Related Versions

This publication has 0 references indexed in Scilit: