Acid–base complexes of polymers

Abstract
The physical interactions of polymers with neighboring molecules are determined by only two kinds of interactions: London dispersion forces and Lewis acid–base interactions. These two kinds of attractive energies (together with certain steric restrictions) determine solubility, solvent retention, plasticizer action, wettability, adsorption, adhesion, reinforcement, crystallinity, and mechanical properties. The London dispersion force interaction energies of polymers have been quantified by the dispersion force contribution to cohesive energy density (δ2d) and the dispersion force contribution to surface energy (δd). The Lewis acid–base interactions, often referred to as “polar” interactions, can be best quantified by Drago's CA and EA constants for acid sites and CB and EB constants for basic sites. In this article infrared spectral shifts are featured as a method of determining enthalpies of acid–base interaction, and the C and E constants for polymers, plasticizers, and solvents. Examples are given where acid–base complexation of polymers with solvents dominate solubility and swelling phenomena. Enthalpies of acid–base complexation in polymer blends are determined from spectral shifts.

This publication has 16 references indexed in Scilit: