Functions of the ON and OFF channels of the visual system
- 1 August 1986
- journal article
- Published by Springer Nature in Nature
- Vol. 322 (6082) , 824-825
- https://doi.org/10.1038/322824a0
Abstract
In the mammalian eye, the ON-centre and OFF-centre retinal ganglion cells form two major pathways projecting to central visual structures from the retina. These two pathways originate at the bipolar cell level: one class of bipolar cells becomes hyperpolarized in response to light, as do all photoreceptor cells, and the other class becomes depolarized on exposure to light, thereby inverting the receptor signal. It has recently become possible to examine the functional role of the ON-pathway in vision by selectively blocking it at the bipolar cell level using the glutamate neurotransmitter analogue 2-amino-4-phosphonobutyrate (APB)1. APB application to monkey, cat and rabbit retinas abolishes ON responses in retinal ganglion cells, the lateral geniculate nucleus and the visual cortex but has no effect on the centre-surround antagonism of OFF cells or the orientation and direction selectivities in the cortex2-5. These and related findings6-11 suggest that the ON and OFF pathways remain largely separate through the lateral geniculate nucleus and that in the cortex, contrary to some hypotheses, they are not directly involved in mechanisms giving rise to orientation and direction selectivities. We have examined the roles of the ON and OFF channels in vision in rhesus monkeys trained to do visual detection and discrimination tasks. We report here that the ON channel is reversibly blocked by injection of APB into the vitreous. Detection of light increment but not of light decrement is severely impaired, and there is a pronounced loss in contrast sensitivity. The perception of shape, colour, flicker, movement and stereo images is only mildly impaired, but longer times are required for their discrimination. Our results suggest that two reasons that the mammalian visual system has both ON and OFF channels is to yield equal sensitivity and rapid information transfer for both incremental and decremental light stimuli and to facilitate high contrast sensitivity.Keywords
This publication has 10 references indexed in Scilit:
- ON and OFF regions in layer IV of striate cortexBrain Research, 1985
- Receptive field properties in the cat's area 17 in the absence of on- center geniculate inputJournal of Neuroscience, 1984
- Receptive field properties in the cat's lateral geniculate nucleus in the absence of on-center retinal inputJournal of Neuroscience, 1984
- The contribution of on-bipolar cells to the electroretinogram of rabbits and monkeysVision Research, 1984
- Laminar organization of tree shrew dorsal lateral geniculate nucleusJournal of Neurophysiology, 1983
- Response properties of cells in rabbit's lateral geniculate nucleus during reversible blockade of retinal on-center channelJournal of Neurophysiology, 1983
- On and off sublaminae in the lateral geniculate nucleus of the ferretJournal of Neuroscience, 1983
- ON and OFF layers in the lateral geniculate nucleus of the minkNature, 1982
- Central connections of the retinal ON and OFF pathwaysNature, 1982
- 2-Amino-4-Phosphonobutyric Acid: A New Pharmacological Tool for Retina ResearchScience, 1981