Resilience of networks formed of interdependent modular networks
Open Access
- 1 December 2015
- journal article
- research article
- Published by IOP Publishing in New Journal of Physics
- Vol. 17 (12) , 123007
- https://doi.org/10.1088/1367-2630/17/12/123007
Abstract
Many infrastructure networks have a modular structure and are also interdependent with other infrastructures. While significant research has explored the resilience of interdependent networks, there has been no analysis of the effects of modularity. Here we develop a theoretical framework for attacks on interdependent modular networks and support our results through simulations. We focus, for simplicity, on the case where each network has the same number of communities and the dependency links are restricted to be between pairs of communities of different networks. This is particularly realistic for modeling infrastructure across cities. Each city has its own infrastructures and different infrastructures are dependent only within the city. However, each infrastructure is connected within and between cities. For example, a power grid will connect many cities as will a communication network, yet a power station and communication tower that are interdependent will likely be in the same city. It has previously been shown that single networks are very susceptible to the failure of the interconnected nodes (between communities) (Shai et al 2014 arXiv:1404.4748) and that attacks on these nodes are even more crippling than attacks based on betweenness (da Cunha et al 2015 arXiv:1502.00353). In our example of cities these nodes have long range links which are more likely to fail. For both treelike and looplike interdependent modular networks we find distinct regimes depending on the number of modules, m. (i) In the case where there are fewer modules with strong intraconnections, the system first separates into modules in an abrupt first-order transition and then each module undergoes a second percolation transition. (ii) When there are more modules with many interconnections between them, the system undergoes a single transition. Overall, we find that modular structure can significantly influence the type of transitions observed in interdependent networks and should be considered in attempts to make interdependent networks more resilient.Keywords
All Related Versions
Funding Information
- Defense Threat Reduction Agency
- Israel Science Foundation
- Deutsche Forschungsgemeinschaft
- Office of Naval Research
- James S. McDonnell Foundation: (220020315)
- EU: (EU-FET project 317532, FP7- PEOPLE-2011-ITN)
This publication has 51 references indexed in Scilit:
- Critical tipping point distinguishing two types of transitions in modular network structuresPhysical Review E, 2015
- Fast Fragmentation of Networks Using Module-Based AttacksPLOS ONE, 2015
- Simultaneous first- and second-order percolation transitions in interdependent networksPhysical Review E, 2014
- Percolation in multiplex networks with overlapPhysical Review E, 2013
- Suppressing cascades of load in interdependent networksProceedings of the National Academy of Sciences, 2012
- Networks formed from interdependent networksNature Physics, 2011
- Percolation in interdependent and interconnected networks: Abrupt change from second- to first-order transitionsPhysical Review E, 2011
- Robustness of a Network of NetworksPhysical Review Letters, 2011
- Interdependent Networks: Reducing the Coupling Strength Leads to a Change from a First to Second Order Percolation TransitionPhysical Review Letters, 2010
- Catastrophic cascade of failures in interdependent networksNature, 2010