Von Neumann algebras and linear independence of translates
Open Access
- 4 May 1999
- journal article
- Published by American Mathematical Society (AMS) in Proceedings of the American Mathematical Society
- Vol. 127 (11) , 3269-3277
- https://doi.org/10.1090/s0002-9939-99-05102-3
Abstract
For x , y ∈ R x,y \in \mathbb {R} and f ∈ L 2 ( R ) f \in L^2(\mathbb {R}) , define ( x , y ) f ( t ) = e 2 π i y t f ( t + x ) (x,y) f(t) = e^{2\pi iyt} f(t+x) and if Λ ⊆ R 2 \Lambda \subseteq \mathbb {R}^2 , define S ( f , Λ ) = { ( x , y ) f ∣ ( x , y ) ∈ Λ } S(f, \Lambda ) = \{(x,y)f \mid (x,y) \in \Lambda \} . It has been conjectured that if f ≠ 0 f\ne 0 , then S ( f , Λ ) S(f,\Lambda ) is linearly independent over C \mathbb {C} ; one motivation for this problem comes from Gabor analysis. We shall prove that S ( f , Λ ) S(f, \Lambda ) is linearly independent if f ≠ 0 f \ne 0 and <inline-formula...All Related Versions
This publication has 6 references indexed in Scilit:
- Linear independence of time-frequency translatesProceedings of the American Mathematical Society, 1996
- Zero divisors and group von Neumann algebrasPacific Journal of Mathematics, 1991
- The maximal ring of quotients of a finite Von Neumann algebraRocky Mountain Journal of Mathematics, 1982
- Von Neumann algebras associated with pairs of lattices in Lie groupsMathematische Annalen, 1981
- An Invitation to C*-AlgebrasPublished by Springer Nature ,1976
- Baer ∗-RingsPublished by Springer Nature ,1972