SHOOT ANDFLORALMERISTEMMAINTENANCE INARABIDOPSIS

Abstract
The shoot apical meristem (SAM) of higher plants functions as a site of continuous organogenesis within which a small pool of pluripotent stem cells replenishes the cells incorporated into lateral organs. This article summarizes recent results demonstrating that the fate of stem cells in Arabidopsis shoot and floral meristems is controlled by overlapping spatial and temporal signaling systems. Stem cell maintenance is an active process requiring constant communication between neighboring groups of SAM cells. Information flows via a ligand-receptor signal transduction pathway, resulting in the formation of a spatial feedback loop that stabilizes the size of the stem cell population. Termination of stem cell activity during flower development is achieved by a temporal feedback loop involving both stem cell maintenance genes and flower patterning genes. These investigations are providing exciting insights into the components and activities of the stem cell regulatory pathway and into the interaction of this pathway with molecular mechanisms that control floral patterning.