Inhibitory effects of intravenous anaesthetic agents on K + -evoked norepinephrine and dopamine release from rat striatal slices: possible involvement of P/Q-type voltage-sensitive Ca 2+ channels
- 1 December 2000
- journal article
- Published by Elsevier in British Journal of Anaesthesia
- Vol. 85 (6) , 874-880
- https://doi.org/10.1093/bja/85.6.874
Abstract
The role of the voltage-sensitive Ca2+ channel (VSCC) as a target for anaesthetic action remains controversial. In this study we characterized the VSCC subtypes involved in K+-evoked norepinephrine and dopamine release from rat striatal slices and used this model system to examine the effects of a range of i.v. anaesthetics on release. Nifedipine (L-channel-selective), omega-conotoxin GVI(A) (N-channel-selective), omega-agatoxin IV(A) (P-channel-selective), omega-conotoxin MVIIc (P/Q-channel-selective) and Cd2+ (non-selective), along with alphaxalone, propofol and ketamine, were used in various combinations. Omega-Agatoxin IV(A), omega-conotoxin MVIIc and Cd2+ fully (100%) inhibited norepinephrine and dopamine release. Clinically achievable concentrations of alphaxalone inhibited norepinephrine and dopamine release, with concentrations producing 25 and 50% inhibition (IC25 and IC50) of the maximum of 2.1 and 7.8 microM respectively for norepinephrine and 2.9 and 7.2 microM for dopamine. The effects of propofol were observed at the top of the clinical range and those of ketamine exceeded this range. In addition, IC50 values for alphaxalone in the presence and absence of nifedipine and omega-conotoxin GVI(A) did not differ from the control. Our data suggest that clinically achievable concentrations of alphaxalone and propofol inhibit norepinephrine and dopamine release, which is mediated predominantly through P/Q-type VSCCs, suggesting a role for these channels in anaesthetic action.Keywords
This publication has 32 references indexed in Scilit:
- Effects of Intravenous Anesthetic Agents on Glutamate ReleaseAnesthesiology, 2000
- Nimodipine Premedication and Induction Dose of PropofolAnesthesia & Analgesia, 2000
- A comparative study of L-type voltage sensitive Ca2+ channels in rat brain regions and cultured neuronal cellsNeuroscience Letters, 1997
- Concentration and regional distribution of propofol in brain and spinal cord during propofol anesthesia in the ratNeuroscience Letters, 1995
- Recent advances in the pharmacology of Ca2+ and K+ channelsTrends in Pharmacological Sciences, 1995
- Isoflurane Inhibits Multiple Voltage-gated Calcium Currents in Hippocampal Pyramidal NeuronsAnesthesiology, 1994
- Snails, Spiders, and Stereospecificity—Is There a Role for Calcium Channels in Anesthetic Mechanisms?Anesthesiology, 1994
- The General Anesthetic Propofol Inhibits Transmembrane Calcium Current in Chick Sensory NeuronsAnesthesia & Analgesia, 1994
- Roles of N-Type and Q-Type Ca 2+ Channels in Supporting Hippocampal Synaptic TransmissionScience, 1994
- P-type calcium channels blocked by the spider toxin ω-Aga-IVANature, 1992