Optimal conditions for in vivo induction of dopaminergic neurons from embryonic stem cells through stromal cell‐derived inducing activity
Open Access
- 27 August 2002
- journal article
- research article
- Published by Wiley in Journal of Neuroscience Research
- Vol. 69 (6) , 934-939
- https://doi.org/10.1002/jnr.10363
Abstract
A method of inducing dopamine (DA) neurons from mouse embryonic stem (ES) cells by stromal cell-derived inducing activity (SDIA) was previously reported. When transplanted, SDIA-induced DA neurons integrate into the mouse striatum and remain positive for tyrosine hydroxylase (TH) expression. In the present study, to optimize the transplantation efficiency, we treated mouse ES cells with SDIA for various numbers of days (8–14 days). SDIA-treated ES cell colonies were isolated by papain treatment and then grafted into the 6-hydroxydopamine (6-OHDA)-lesioned mouse striatum. The ratio of the number of surviving TH-positive cells to the total number of grafted cells was highest when ES cells were treated with SDIA for 12 days before transplantation. This ratio revealed that grafting cell colonies was more efficient for obtaining TH-positive cells in vivo than grafting cell suspensions. When we grafted a cell suspension of 2 × 105, 2 × 104, or 2 × 103 cells into the 6-OHDA-lesioned mouse striatum, we observed only a few surviving TH-positive cells. In conclusion, inducing DA neurons from mouse ES cells by SDIA for 12 days and grafting cell colonies into mouse striatum was the most effective method for the survival of TH-positive neurons in vivo.Keywords
This publication has 21 references indexed in Scilit:
- Neural progenitors from human embryonic stem cellsNature Biotechnology, 2001
- In vitro differentiation of transplantable neural precursors from human embryonic stem cellsNature Biotechnology, 2001
- Establishment of embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSIDevelopmental Dynamics, 2001
- Growth factors regulate the survival and fate of cells derived from human neurospheresNature Biotechnology, 2001
- Induction of Midbrain Dopaminergic Neurons from ES Cells by Stromal Cell–Derived Inducing ActivityNeuron, 2000
- Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cellsNature Biotechnology, 2000
- Fetal nigral transplantation as a therapy for Parkinson's diseaseTrends in Neurosciences, 1996
- The influence of donor age on the survival of solid and suspension intraparenchymal human embryonic nigral graftsCell Transplantation, 1995
- Survival and function of dissociated rat dopamine neurones grafted at different developmental stages or after being cultured in vitroDevelopmental Brain Research, 1988
- Estimation of nuclear population from microtome sectionsThe Anatomical Record, 1946